奶昔直播官方版-奶昔直播直播视频在线观看免费版下载-奶昔直播安卓版本免费安装

高一數(shù)學(xué)導(dǎo)數(shù)公式證明大全

2016-12-30 20:03:55 來源:滬江高考資源網(wǎng)

   導(dǎo)數(shù)的定義:f'(x)=lim Δy/Δx Δx→0(下面就不再標明Δx→0了)

  用定義求導(dǎo)數(shù)公式

  (1)f(x)=x^n

  證法一:(n為自然數(shù))

  f'(x)

  =lim [(x+Δx)^n-x^n]/Δx

  =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx

  =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]

  =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)

  =nx^(n-1)

  證法二:(n為任意實數(shù))

  f(x)=x^n

  lnf(x)=nlnx

  (lnf(x))'=(nlnx)'

  f'(x)/f(x)=n/x

  f'(x)=n/x*f(x)

  f'(x)=n/x*x^n

  f'(x)=nx^(n-1)

  (2)f(x)=sinx

  f'(x)

  =lim (sin(x+Δx)-sinx)/Δx

  =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx

  =lim (sinx+cosxsinΔx-sinx)/Δx

  =lim cosxsinΔx/Δx

  =cosx

  (3)f(x)=cosx

  f'(x)

  =lim (cos(x+Δx)-cosx)/Δx

  =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx

  =lim (cosx-sinxsinΔx-cos)/Δx

  =lim -sinxsinΔx/Δx

  =-sinx

  (4)f(x)=a^x

  證法一:

  f'(x)

  =lim (a^(x+Δx)-a^x)/Δx

  =lim a^x*(a^Δx-1)/Δx

  (設(shè)a^Δx-1=m,則Δx=loga^(m+1))

  =lim a^x*m/loga^(m+1)

  =lim a^x*m/[ln(m+1)/lna]

  =lim a^x*lna*m/ln(m+1)

  =lim a^x*lna/[(1/m)*ln(m+1)]

  =lim a^x*lna/ln[(m+1)^(1/m)]

  =lim a^x*lna/lne

  =a^x*lna

  證法二:

  f(x)=a^x

  lnf(x)=xlna

  [lnf(x)] '=[xlna] '

  f' (x)/f(x)=lna

  f' (x)=f(x)lna

  f' (x)=a^xlna

  若a=e,原函數(shù)f(x)=e^x

  則f'(x)=e^x*lne=e^x

  (5)f(x)=loga^x

  f'(x)

  =lim (loga^(x+Δx)-loga^x)/Δx

  =lim loga^[(x+Δx)/x]/Δx

  =lim loga^(1+Δx/x)/Δx

  =lim ln(1+Δx/x)/(lna*Δx)

  =lim x*ln(1+Δx/x)/(x*lna*Δx)

  =lim (x/Δx)*ln(1+Δx/x)/(x*lna)

  =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)

  =lim lne/(x*lna)

  =1/(x*lna)

  若a=e,原函數(shù)f(x)=loge^x=lnx

  則f'(x)=1/(x*lne)=1/x

  (6)f(x)=tanx

  f'(x)

  =lim (tan(x+Δx)-tanx)/Δx

  =lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx

  =lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))

  =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))

  =lim sinΔx/(Δxcosxcos(x+Δx))

  =1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2

  (7)f(x)=cotx

  f'(x)

  =lim (cot(x+Δx)-cotx)/Δx

  =lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx

  =lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))

  =lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))

  =lim -sinΔx/(Δxsinxsin(x+Δx))

  =-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2

  (8)f(x)=secx

  f'(x)

  =lim (sec(x+Δx)-secx)/Δx

  =lim (1/cos(x+Δx)-1/cosx)/Δx

  =lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)

  =lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))

  =lim sinxsinΔx/(Δxcosxcos(x+Δx))

  =sinx/(cosx)^2=tanx*secx

  (9)f(x)=cscx

  f'(x)

  =lim (csc(x+Δx)-cscx)/Δx

  =lim (1/sin(x+Δx)-1/sinx)/Δx

  =lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))

  =lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx))

  =lim -sinΔxcosx/(Δxsinxsin(x+Δx))

  =-cosx/(sinx)^2=-cotx*cscx

  (10)f(x)=x^x

  lnf(x)=xlnx

  (lnf(x))'=(xlnx)'

  f'(x)/f(x)=lnx+1

  f'(x)=(lnx+1)*f(x)

  f'(x)=(lnx+1)*x^x

  (12)h(x)=f(x)g(x)

  h'(x)

  =lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx

  =lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx

  =lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx

  =lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx

  =f'(x)g(x)+f(x)g'(x)

  (13)h(x)=f(x)/g(x)

  h'(x)

  =lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx

  =lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))

  =lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))

  =lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))

  =lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))

  =f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))

  =[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x

  (14)h(x)=f(g(x))

  h'(x)

  =lim [f(g(x+Δx))-f(g(x))]/Δx

  =lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx

  (另g(x)=u,g(x+Δx)-g(x)=Δu)

  =lim (f(u+Δu)-f(u))/Δx

  =lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)

  =lim f'(u)*Δu/Δx

  =lim f'(u)*(g(x+Δx)-g(x))/Δx

  =f'(u)*g'(x)=f'(g(x))g'(x)

  (反三角函數(shù)的導(dǎo)數(shù)與三角函數(shù)的導(dǎo)數(shù)的乘積為1,因為函數(shù)與反函數(shù)關(guān)于y=x對稱,所以導(dǎo)數(shù)也關(guān)于y=x對稱,所以導(dǎo)數(shù)的乘積為1)

  (15)y=f(x)=arcsinx

  則siny=x

  (siny)'=cosy

  所以

  (arcsinx)'=1/(siny)'=1/cosy

  =1/√1-(siny)^2

  (siny=x)

  =1/√1-x^2

  即f'(x)=1/√1-x^2

  (16)y=f(x)=arctanx

  則tany=x

  (tany)'=1+(tany)^2=1+x^2

  所以

  (arctanx)'=1/1+x^2

  即f'(x)= 1/1+x^2

  總結(jié)一下

  (x^n)'=nx^(n-1)

  (sinx)'=cosx

  (cosx)'=-sinx

  (a^x)'=a^xlna

  (e^x)'=e^x

  (loga^x)'=1/(xlna)

  (lnx)'=1/x

  (tanx)'=(secx)^2=1+(tanx)^2

  (cotx)'=-(cscx)^2=-1-(cotx)^2

  (secx)'=tanx*secx

  (cscx)'=-cotx*cscx

  (x^x)'=(lnx+1)*x^x

  (arcsinx)'=1/√1-x^2

  (arctanx)'=1/1+x^2

  [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)

  [f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))

  [f(g(x))]'=f'(g(x))g'(x)

  (責(zé)任編輯:張新革)

  特別說明:由于各省份高考政策等信息的不斷調(diào)整與變化,育路高考網(wǎng)所提供的所有考試信息僅供考生及家長參考,敬請考生及家長以權(quán)威部門公布的正式信息為準。

高考專業(yè)報名咨詢
  • 意向?qū)I(yè):
  • 學(xué)生姓名:
  • 聯(lián)系電話:
  • 出生日期:
  • 您的問題:
  • 《隱私保障》

分享“高一數(shù)學(xué)導(dǎo)數(shù)公式證明大全”到:

58.4K

網(wǎng)站地圖

關(guān)注高考招生官微
獲取更多招生信息
高校招生微信