2017考研數(shù)學:矩陣秩的基本性質(zhì)分析
矩陣是線性代數(shù)的比較基本內(nèi)容和工具,線性代數(shù)中其它大部分問題的解決都需要用到矩陣,包括:線性方程組解的分析和計算、向量的線性關(guān)系的分析、特征值和特征向量以及二次型的分析和計算等,矩陣幾乎貫穿線性代數(shù)的始終。矩陣的秩是矩陣的一個重要特征,它在討論方程組的解的結(jié)構(gòu)和向量組的線性關(guān)系中有重要的作用,下面文都考研數(shù)學輔導老師對矩陣秩的基本性質(zhì)做些總結(jié)分析,供各位2017考研的同學參考。
一、矩陣秩的定義
雖然矩陣的秩是根據(jù)比較高階非零子式的階數(shù)來定義的,但在具體計算一個矩陣的秩時,我們一般不用定義來求秩,而是根據(jù)上面的基本性質(zhì)(3),用初等行變換將矩陣化為階梯形,其非零行的行數(shù)即矩陣的秩。在線性方程組中,矩陣的秩本質(zhì)上就是方程組的約束條件個數(shù)。關(guān)于矩陣的秩,除了上面的基本性質(zhì)外,還有一些其它常用的性質(zhì),想進一步了解的同學請關(guān)注文都網(wǎng)校的相關(guān)資訊。
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責任;
②部分稿件來源于網(wǎng)絡,如有侵權(quán),請聯(lián)系我們溝通解決。
25人覺得有用
06
2016.02
等價轉(zhuǎn)化方法在考研數(shù)學中的應用 考研數(shù)學中有一部分題目因為在復習過程中沒見過,讓考生感到......
06
2016.02
2017考研數(shù)學復習,就選《復習大全》 2016考研已經(jīng)結(jié)束,見證了學長們?yōu)樽约旱膲粝肱ζ床?.....
06
2016.02
2017考研數(shù)學二之無窮小量的比較 無窮小量是數(shù)二的一個必考知識點,每一年都會考,通常以選擇題......
06
2016.02
2017考研數(shù)學二之曲率的計算 曲率是一個很小的知識點,大綱的要求是“了解曲率、曲率圓和......
06
2016.02
2017考研數(shù)學二之漸近線的求解 漸近線是數(shù)二�?嫉囊粋知識點,近幾年雖然不能說年年考,但可以......