線性代數(shù)的學(xué)習(xí)切入點:線性方程組。換言之,可以把線性代數(shù)看作是在研究線性方程組這一對象的過程中建立起來的學(xué)科。
線性方程組的特點:方程是未知數(shù)的一次齊次式,方程組的數(shù)目s和未知數(shù)的個數(shù)n可以相同,也可以不同。
關(guān)于線性方程組的解,有三個問題值得討論:(1)、方程組是否有解,即解的存在性問題;(2)、方程組如何求解,有多少個解;(3)、方程組有不止一個解時,這些不同的解之間有無內(nèi)在聯(lián)系,即解的結(jié)構(gòu)問題。
高斯消元法,比較基礎(chǔ)和比較直接的求解線性方程組的方法,其中涉及到三種對方程的同解變換:(1)、把某個方程的k倍加到另外一個方程上去;(2)、交換某兩個方程的位置;(3)、用某個常數(shù)k乘以某個方程。我們把這三種變換統(tǒng)稱為線性方程組的初等變換。
任意的線性方程組都可以通過初等變換化為階梯形方程組。
由具體例子可看出,化為階梯形方程組后,就可以依次解出每個未知數(shù)的值,從而求得方程組的解。
對方程組的解起決定性作用的是未知數(shù)的系數(shù)及其相對位置,所以可以把方程組的所有系數(shù)及常數(shù)項按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個數(shù)按某種方式構(gòu)成的表稱為矩陣。
可以用矩陣的形式來表示一個線性方程組,這至少在書寫和表達(dá)上都更加簡潔。
系數(shù)矩陣和增廣矩陣。
高斯消元法中對線性方程組的初等變換,就對應(yīng)的是矩陣的初等行變換。階梯形方程組,對應(yīng)的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對其增廣矩陣做初等行變換化為階梯形矩陣,求得解。
階梯形矩陣的特點:左下方的元素全為零,每一行的第一個不為零的元素稱為該行的主元。
對不同的線性方程組的具體求解結(jié)果進(jìn)行歸納總結(jié)(有唯一解、無解、有無窮多解),再經(jīng)過嚴(yán)格證明,可得到關(guān)于線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現(xiàn)0=d這一項,則方程組無解,若未出現(xiàn)0=d一項,則方程組有解;在方程組有解的情況下,若階梯形的非零行數(shù)目r等于未知量數(shù)目n,方程組有唯一解,若r
在利用初等變換得到階梯型后,還可進(jìn)一步得到比較簡形,使用比較簡形,比較簡形的特點是主元上方的元素也全為零,這對于求解未知量的值更加方便,但代價是之前需要經(jīng)過更多的初等變換。在求解過程中,選擇階梯形還是比較簡形,取決于個人習(xí)慣。
常數(shù)項全為零的線性方程稱為齊次方程組,齊次方程組必有零解。
齊次方程組的方程組個數(shù)若小于未知量個數(shù),則方程組一定有非零解。
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系我們溝通解決。
25人覺得有用
14
2011.08
考研數(shù)學(xué)想要拿高分不是一件難事,但是如果沒有努力的付出,也是不可能取得理想的成績的。線性代數(shù)......
14
2011.08
(3)主要矛盾和非主要矛盾、矛盾的主要方面和矛盾的非主要方面(兩點論和重點論) 在復(fù)雜的矛盾系......
14
2011.08
2、否定之否定規(guī)律 (1)含義:肯定是事物中維持其存在的因素,是肯定這一事物為它自身而不是別物......
14
2011.08
4、可能和現(xiàn)實 (1)含義:現(xiàn)實指現(xiàn)在的一切事物、現(xiàn)象的實際存在,它使對相互聯(lián)系、變化發(fā)展的客......
14
2011.08
3、原因和結(jié)果 (1)含義:原因和結(jié)果是揭示事物或現(xiàn)象間普遍聯(lián)系和相互作用的哲學(xué)范疇。原因是指......
14
2011.08
三、世界是有規(guī)律的 1、規(guī)律的定義:事物本身所固有的本質(zhì)的、必然的、穩(wěn)定的聯(lián)系,是事物內(nèi)部......