奶昔直播官方版-奶昔直播直播视频在线观看免费版下载-奶昔直播安卓版本免费安装

高一數(shù)學習題:奇偶性

2016-12-10 19:39:12 來源:學大教育題庫資源網

   1.下列命題中,真命題是(  )

  A.函數(shù)y=1x是奇函數(shù),且在定義域內為減函數(shù)

  B.函數(shù)y=x3(x-1)0是奇函數(shù),且在定義域內為增函數(shù)

  C.函數(shù)y=x2是偶函數(shù),且在(-3,0)上為減函數(shù)

  D.函數(shù)y=ax2+c(ac≠0)是偶函數(shù),且在(0,2)上為增函數(shù)

  解析:選C.選項A中,y=1x在定義域內不具有單調性;B中,函數(shù)的定義域不關于原點對稱;D中,當a<0時,y=ax2+c(ac≠0)在(0,2)上為減函數(shù),故選C.

  2.奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),在區(qū)間[3,6]上的最大值為8,最小值為-1,則2f(-6)+f(-3)的值為(  )

  A.10 B.-10

  C.-15   D.15

  解析:選C.f(x)在[3,6]上為增函數(shù),f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

  3.f(x)=x3+1x的圖象關于(  )

  A.原點對稱 B.y軸對稱

  C.y=x對稱 D.y=-x對稱

  解析:選A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)為奇函數(shù),關于原點對稱.

  4.如果定義在區(qū)間[3-a,5]上的函數(shù)f(x)為奇函數(shù),那么a=________.

  解析:∵f(x)是[3-a,5]上的奇函數(shù),

  ∴區(qū)間[3-a,5]關于原點對稱,

  ∴3-a=-5,a=8.

  答案:8

  1.函數(shù)f(x)=x的奇偶性為(  )

  A.奇函數(shù)         B.偶函數(shù)

  C.既是奇函數(shù)又是偶函數(shù) D.非奇非偶函數(shù)

  解析:選D.定義域為{x|x≥0},不關于原點對稱.

  2.下列函數(shù)為偶函數(shù)的是(  )

  A.f(x)=|x|+x B.f(x)=x2+1x

  C.f(x)=x2+x D.f(x)=|x|x2

  解析:選D.只有D符合偶函數(shù)定義.

  3.設f(x)是R上的任意函數(shù),則下列敘述正確的是(  )

  A.f(x)f(-x)是奇函數(shù)

  B.f(x)|f(-x)|是奇函數(shù)

  C.f(x)-f(-x)是偶函數(shù)

  D.f(x)+f(-x)是偶函數(shù)

  解析:選D.設F(x)=f(x)f(-x)

  則F(-x)=F(x)為偶函數(shù).

  設G(x)=f(x)|f(-x)|,

  則G(-x)=f(-x)|f(x)|.

  ∴G(x)與G(-x)關系不定.

  設M(x)=f(x)-f(-x),

  ∴M(-x)=f(-x)-f(x)=-M(x)為奇函數(shù).

  設N(x)=f(x)+f(-x),則N(-x)=f(-x)+f(x).

  N(x)為偶函數(shù).

  4.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx(  )

  A.是奇函數(shù)

  B.是偶函數(shù)

  C.既是奇函數(shù)又是偶函數(shù)

  D.是非奇非偶函數(shù)

  解析:選A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函數(shù);因為g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函數(shù).

  5.奇函數(shù)y=f(x)(x∈R)的圖象必過點(  )

  A.(a,f(-a)) B.(-a,f(a))

  C.(-a,-f(a)) D.(a,f(1a))

  解析:選C.∵f(x)是奇函數(shù),

  ∴f(-a)=-f(a),

  即自變量取-a時,函數(shù)值為-f(a),

  故圖象必過點(-a,-f(a)).

  6.f(x)為偶函數(shù),且當x≥0時,f(x)≥2,則當x≤0時(  )

  A.f(x)≤2 B.f(x)≥2

  C.f(x)≤-2 D.f(x)∈R

  解析:選B.可畫f(x)的大致圖象易知當x≤0時,有f(x)≥2.故選B.

  7.若函數(shù)f(x)=(x+1)(x-a)為偶函數(shù),則a=________.

  解析:f(x)=x2+(1-a)x-a為偶函數(shù),

  ∴1-a=0,a=1.

  答案:1

  8.下列四個結論:①偶函數(shù)的圖象一定與縱軸相交;②奇函數(shù)的圖象一定通過原點;③f(x)=0(x∈R)既是奇函數(shù),又是偶函數(shù);④偶函數(shù)的圖象關于y軸對稱.其中正確的命題是________.

  解析:偶函數(shù)的圖象關于y軸對稱,不一定與y軸相交,①錯,④對;奇函數(shù)當x=0無意義時,其圖象不過原點,②錯,③對.

  答案:③④

  9.①f(x)=x2(x2+2);②f(x)=x|x|;

 �、踗(x)=3x+x;④f(x)=1-x2x.

  以上函數(shù)中的奇函數(shù)是________.

  解析:(1)∵x∈R,∴-x∈R,

  又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),

  ∴f(x)為偶函數(shù).

  (2)∵x∈R,∴-x∈R,

  又∵f(-x)=-x|-x|=-x|x|=-f(x),

  ∴f(x)為奇函數(shù).

  (3)∵定義域為[0,+∞),不關于原點對稱,

  ∴f(x)為非奇非偶函數(shù).

  (4)f(x)的定義域為[-1,0)∪(0,1]

  即有-1≤x≤1且x≠0,則-1≤-x≤1且-x≠0,

  又∵f(-x)=1--x2-x=-1-x2x=-f(x).

  ∴f(x)為奇函數(shù).

  答案:②④

  10.判斷下列函數(shù)的奇偶性:

  (1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+x  x<0-x2+x x>0.

  解:(1)由1+x1-x≥0,得定義域為[-1,1),關于原點不對稱,∴f(x)為非奇非偶函數(shù).

  (2)當x<0時,-x>0,則f(-x)=-(-x)2-x=-(-x2+x)=-f(x),

  當x>0時,-x<0,則f(-x)=(-x)2-x=-(-x2+x)=-f(x),

  綜上所述,對任意的x∈(-∞,0)∪(0,+∞),都有f(-x)=-f(x),

  ∴f(x)為奇函數(shù).

  11.判斷函數(shù)f(x)=1-x2|x+2|-2的奇偶性.

  解:由1-x2≥0得-1≤x≤1.

  由|x+2|-2≠0得x≠0且x≠-4.

  ∴定義域為[-1,0)∪(0,1],關于原點對稱.

  ∵x∈[-1,0)∪(0,1]時,x+2>0,

  ∴f(x)=1-x2|x+2|-2=1-x2x,

  ∴f(-x)=1--x2-x=-1-x2x=-f(x),

  ∴f(x)=1-x2|x+2|-2是奇函數(shù).

  12.若函數(shù)f(x)的定義域是R,且對任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.試判斷f(x)的奇偶性.

  解:在f(x+y)=f(x)+f(y)中,令x=y=0,

  得f(0+0)=f(0)+f(0),

  ∴f(0)=0.

  再令y=-x,則f(x-x)=f(x)+f(-x),

  即f(x)+f(-x)=0,

  ∴f(-x)=-f(x),故f(x)為奇函數(shù).

  (責任編輯:張新革)

  特別說明:由于各省份高考政策等信息的不斷調整與變化,育路高考網所提供的所有考試信息僅供考生及家長參考,敬請考生及家長以權威部門公布的正式信息為準。

高考專業(yè)報名咨詢
  • 意向專業(yè):
  • 學生姓名:
  • 聯(lián)系電話:
  • 出生日期:
  • 您的問題:
  • 《隱私保障》

分享“高一數(shù)學習題:奇偶性”到:

58.4K
關注高考招生官微
獲取更多招生信息
高校招生微信