高一數(shù)學(xué):集合間的基本關(guān)系測(cè)試題
一.下列六個(gè)關(guān)系式,其中正確的有( )
�、賩a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.
A.6個(gè) B.5個(gè)
C.4個(gè) D.3個(gè)及3個(gè)以下
解析:選C.①②⑤⑥正確.
二.已知集合A,B,若A不是B的子集,則下列命題中正確的是( )
A.對(duì)任意的a∈A,都有a∉B
B.對(duì)任意的b∈B,都有b∈A
C.存在a0,滿(mǎn)足a0∈A,a0∉B
D.存在a0,滿(mǎn)足a0∈A,a0∈B
解析:選C.A不是B的子集,也就是說(shuō)A中存在不是B中的元素,顯然正是C選項(xiàng)要表達(dá)的.對(duì)于A和B選項(xiàng),取A={1,2},B={2,3}可否定,對(duì)于D選項(xiàng),取A={1},B={2,3}可否定.
3.設(shè)A={x|1
A.a≥2 B.a≤1
C.a≥1 D.a≤2
解析:選A.A={x|1
4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的個(gè)數(shù)為_(kāi)_______.
解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2個(gè)元素,所以子集有4個(gè).
答案:4
1.如果A={x|x>-1},那么( )
A.0⊆A B.{0}∈A
C.∅∈A D.{0}⊆A
解析:選D.A、B、C的關(guān)系符號(hào)是錯(cuò)誤的.
2.已知集合A={x|-1
A.A>B B.A B
C.B A D.A⊆B
解析:選C.利用數(shù)軸(圖略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.
三.定義A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},則A-B等于( )
A.A B.B
C.{2} D.{1,7,9}
解析:選D.從定義可看出,元素在A中但是不能在B中,所以只能是D.
四.以下共有6組集合.
(1)A={(-5,3)},B={-5,3};
(2)M={1,-3},N={3,-1};
(3)M=∅,N={0};
(4)M={π},N={3.1415};
(5)M={x|x是小數(shù)},N={x|x是實(shí)數(shù)};
(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.
其中表示相等的集合有( )
A.2組 B.3組
C.4組 D.5組
解析:選A.(5),(6)表示相等的集合,注意小數(shù)是實(shí)數(shù),而實(shí)數(shù)也是小數(shù).
五.定義集合間的一種運(yùn)算“*”滿(mǎn)足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},則A*B的子集的個(gè)數(shù)是( )
A.4 B.8
C.16 D.32
解析:選B.在集合A和B中分別取出元素進(jìn)行*的運(yùn)算,有0•2•(0+2)=0•3•(0+3)=0,1•2•(1+2)=6,1•3•(1+3)=12,因此可知A*B={0,6,12},因此其子集個(gè)數(shù)為23=8,選B.
六.設(shè)B={1,2},A={x|x⊆B},則A與B的關(guān)系是( )
A.A⊆B B.B⊆A
C.A∈B D.B∈A
解析:選D.∵B的子集為{1},{2},{1,2},∅,
∴A={x|x⊆B}={{1},{2},{1,2},∅},∴B∈A.
七.設(shè)x,y∈R,A={(x,y)|y=x},B={(x,y)|yx=1},則A、B間的關(guān)系為_(kāi)_______.
解析:在A中,(0,0)∈A,而(0,0)∉B,故B A.
答案:B A
八.設(shè)集合A={1,3,a},B={1,a2-a+1},且A⊇B,則a的值為_(kāi)_______.
解析:A⊇B,則a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,結(jié)合集合元素的互異性,可確定a=-1或a=2.
答案:-1或2
九.已知A={x|x<-1或x>5},B={x|a≤x
解析:作出數(shù)軸可得,要使A B,則必須a+4≤-1或a>5,解之得{a|a>5或a≤-5}.
答案:{a|a>5或a≤-5}
十.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
解:①若a+b=aca+2b=ac2,消去b得a+ac2-2ac=0,
即a(c2-2c+1)=0.
當(dāng)a=0時(shí),集合B中的三個(gè)元素相同,不滿(mǎn)足集合中元素的互異性,
故a≠0,c2-2c+1=0,即c=1;
當(dāng)c=1時(shí),集合B中的三個(gè)元素也相同,
∴c=1舍去,即此時(shí)無(wú)解.
�、谌鬭+b=ac2a+2b=ac,消去b得2ac2-ac-a=0,
即a(2c2-c-1)=0.
∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0.
又∵c≠1,∴c=-12.
十一.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.
(1)若A B,求a的取值范圍;
(2)若B⊆A,求a的取值范圍.
解:(1)若A B,由圖可知,a>2.
(2)若B⊆A,由圖可知,1≤a≤2.
十二.若集合A={x|x2+x-6=0},B={x|mx+1=0},且B A,求實(shí)數(shù)m的值.
解:A={x|x2+x-6=0}={-3,2}.
∵B A,∴mx+1=0的解為-3或2或無(wú)解.
當(dāng)mx+1=0的解為-3時(shí),
由m•(-3)+1=0,得m=13;
當(dāng)mx+1=0的解為2時(shí),
由m•2+1=0,得m=-12;
當(dāng)mx+1=0無(wú)解時(shí),m=0.
綜上所述,m=13或m=-12或m=0.
(責(zé)任編輯:張新革)
特別說(shuō)明:由于各省份高考政策等信息的不斷調(diào)整與變化,育路高考網(wǎng)所提供的所有考試信息僅供考生及家長(zhǎng)參考,敬請(qǐng)考生及家長(zhǎng)以權(quán)威部門(mén)公布的正式信息為準(zhǔn)。
- 1空乘專(zhuān)業(yè)查看招生院校
- 2高鐵乘務(wù)專(zhuān)業(yè)查看招生院校
- 3影視后期制作查看招生院校
- 4酒店管理專(zhuān)業(yè)查看招生院校
- 5護(hù)理專(zhuān)業(yè)查看招生院校
- 6UI設(shè)計(jì)專(zhuān)業(yè)查看招生院校
- 7飛機(jī)維修專(zhuān)業(yè)查看招生院校
- 8學(xué)前教育專(zhuān)業(yè)查看招生院校
- 9視覺(jué)傳達(dá)設(shè)計(jì)查看招生院校
- 10動(dòng)漫動(dòng)畫(huà)專(zhuān)業(yè)查看招生院校
高考就業(yè)率最高的十大專(zhuān)業(yè)排行
分享“高一數(shù)學(xué):集合間的基本關(guān)系測(cè)試題”到:
- 高一數(shù)學(xué):必修二知識(shí)點(diǎn)立體幾何
- 高一數(shù)學(xué):空間兩直線(xiàn)的位置關(guān)系
- 高一數(shù)學(xué):直線(xiàn)和平面的位置關(guān)系
- 高一數(shù)學(xué):必修二知識(shí)點(diǎn)數(shù)學(xué)兩個(gè)平面的位
- 高一數(shù)學(xué):必修1第一章知識(shí)點(diǎn)總結(jié)
- 高一數(shù)學(xué):必修知識(shí)點(diǎn)冪函數(shù)2
- 高一數(shù)學(xué):必修知識(shí)點(diǎn)冪函數(shù)
- 高一數(shù)學(xué):必修知識(shí)點(diǎn)函數(shù)的應(yīng)用
- 高一數(shù)學(xué):必修一各章知識(shí)點(diǎn)總結(jié)5
- 高一數(shù)學(xué):必修一各章知識(shí)點(diǎn)總結(jié)4
高考最新動(dòng)態(tài)
- 2018年江西省體育單招考試文化課統(tǒng)考安
- 北京市高校招生體檢結(jié)果4月20日起可查詢(xún)
- 上海市4月高中生學(xué)業(yè)水平考試成績(jī)于4月
- 2018年青海省高校招生體育專(zhuān)業(yè)統(tǒng)考時(shí)間
- 2018年北京市高中學(xué)業(yè)水平考試于6月底開(kāi)
- 2018年重慶市高職考試分?jǐn)?shù)線(xiàn)公布
- 2018年北京市高中學(xué)業(yè)水平考試時(shí)間安排
- 2018年浙江省4月學(xué)考選考首日 51.3萬(wàn)考
- 廣東省自學(xué)考試商務(wù)、金融管理等專(zhuān)業(yè)考
- 2018年青海省將實(shí)行平行志愿投檔錄取方