一、高數(shù)解題的四種思維定勢(shì)
1、在題設(shè)條件中給出一個(gè)函數(shù)f(x)二階和二階以上可導(dǎo),“不管三七二十一”,把f(x)在指定點(diǎn)展成泰勒公式再說(shuō)。
2、在題設(shè)條件或欲證結(jié)論中有定積分表達(dá)式時(shí),則“不管三七二十一”先用積分中值定理對(duì)該積分式處理一下再說(shuō)。
3、在題設(shè)條件中函數(shù)f(x)在[a,b>上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=0或f(b)=0或f(a)=f(b)=0,則“不管三七二十一”先用拉格朗日中值定理處理一下再說(shuō)。
4、對(duì)定限或變限積分,若被積函數(shù)或其主要部分為復(fù)合函數(shù),則“不管三七二十一”先做變量替換使之成為簡(jiǎn)單形式f(u)再說(shuō)。
二、線性代數(shù)解題的八種思維定勢(shì)
1、題設(shè)條件與代數(shù)余子式Aij或A*有關(guān),則立即聯(lián)想到用行列式按行(列)展開(kāi)定理以及AA*=A*A=|A|E 。
2、若涉及到A、B是否可交換,即AB=BA,則立即聯(lián)想到用逆矩陣的定義去分析。
3、若題設(shè)n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說(shuō)。
4、若要證明一組向量a1,a2,…,as線性無(wú)關(guān),先考慮用定義再說(shuō)。
5、若已知AB=0,則將B的每列作為Ax=0的解來(lái)處理再說(shuō)。
6、若由題設(shè)條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零再說(shuō)。
7、若已知A的特征向量ζ0,則先用定義Aζ0=λ0ζ0處理一下再說(shuō)。
8、若要證明抽象n階實(shí)對(duì)稱矩陣A為正定矩陣,則用定義處理一下再說(shuō)。
第三部分《概率與數(shù)理統(tǒng)計(jì)解題的九種思維定勢(shì)》以及全部21種思維定勢(shì)的詳細(xì)解釋請(qǐng)下載瀏覽。
結(jié)束
特別聲明:①凡本網(wǎng)注明稿件來(lái)源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來(lái)源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來(lái)源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。