"/>
在MBA考試中,數(shù)學(xué)往往是令很多考生頭疼的一門科目,做題的難點(diǎn)在于找不到解題思路,下面關(guān)于MBA數(shù)學(xué)解題思路的小方法希望對(duì)大家的備考有所幫助。
1、把文字材料翻譯成數(shù)學(xué)語言。數(shù)學(xué)的語言是方程、等式或不等式,把題目中出現(xiàn)的每個(gè)變量都用X,Y,Z等未知數(shù)代替,再從題目中找出這些未知數(shù)之間的關(guān)系。多數(shù)初等數(shù)學(xué)題都變成了解線性方程。
2、聯(lián)想。對(duì)題目中出現(xiàn)的式子要展開聯(lián)想,搜索記憶庫中的導(dǎo)數(shù)、積分、數(shù)列等等中的公式,看它與哪個(gè)公式“模樣”比較象,就朝哪個(gè)方向去思考。
3、簡(jiǎn)化。題目中的式子可能很復(fù)雜,我們可以把相同的東西用一個(gè)新的變量代替,復(fù)雜式子中的簡(jiǎn)單關(guān)系就顯現(xiàn)出來了。
4、搭出思維的框架。就像寫文章一樣,具體內(nèi)容還沒想全,但頭腦中已經(jīng)有提綱。比如已知等差數(shù)列的第二項(xiàng)和第七項(xiàng),求數(shù)列第101項(xiàng)到第200項(xiàng)的和。在具體求之前,頭腦中就要先有解題的框架: 設(shè)數(shù)列首項(xiàng)a1和公差d為未知數(shù)—》列出兩個(gè)方程—》解出a1,d—》由數(shù)列通項(xiàng)公式計(jì)算前N項(xiàng)和公式—》計(jì)算S100和S200—》S200-S100得出答案。這樣思路清晰,能提高解題速度。
此外,還可以學(xué)習(xí)一些通用解法。通用解法可以解決相同類型的所有題目,無須再費(fèi)時(shí)間思考。比如線代中的線性方程解法、高數(shù)中復(fù)合函數(shù)的二階導(dǎo)數(shù)、隱函數(shù)的偏導(dǎo)數(shù)、概率中的數(shù)學(xué)期望和方差等,都是通用解法,答題的速度和準(zhǔn)確性依賴于自己的計(jì)算能力,雖然計(jì)算復(fù)雜,但不用花時(shí)間思考。我也總結(jié)過不少通用解法,比較典型的是:
已知數(shù)列通項(xiàng)公式A(N),求數(shù)列的前N項(xiàng)和S(N)。
這個(gè)問題等價(jià)于求S(N)的通項(xiàng)公式,而S(N)=S(N-1)+A(N),這就成為遞推數(shù)列的問題。
解法是尋找一個(gè)數(shù)列B(N),使S(N)+B(N)=S(N-1)+B(N-1) ;
從而S(N)=A(1)+B(1)-B(N)猜想B(N)的方法:對(duì)于求集合元素個(gè)數(shù)的問題,也有通用解法。比如三個(gè)相交的集合,可以先畫出三個(gè)相交的圓圈,分別作為集合A、B、C,A在上,B在左下,C在右下。則A、B、C都被分為四部分,一共分為7塊。從最上開始,沿逆時(shí)針方向?qū)⒅車蝗υO(shè)為X1、X2。。。X6,中間為X7,AUBUC的補(bǔ)集設(shè)為X8。那么題目中給出的任何條件都可以化成關(guān)于這八個(gè)未知數(shù)的方程組,然后變成解線性方程組的問題。如果不用這種方法,題目中的A與B的交集并上C、A與B的差交C等變化萬千的條件容易把人攪得頭暈?zāi)X漲。與通用解法相對(duì)應(yīng)的是特殊解法。特殊解法方法巧妙,計(jì)算簡(jiǎn)便,可以大大提高解題速度。但掌握特殊解法需要靠大量的練習(xí)、總結(jié)、積累。如求函數(shù)f(x)=x^2(1-x)在[0,1]上的最大值,可利用幾何平均數(shù)小于算術(shù)平均數(shù)的性質(zhì),直接得出:
f(x)= x^2(1-x)=4*x/2*x/2*(1-x)<=4*[(x/2+x/2+1-x)/3]^3=4/27,等號(hào)在x/2=1-x,即x=2/3時(shí)成立。從而最大值為4/27。無須求導(dǎo)數(shù)、駐點(diǎn)再代入原式計(jì)算。
相關(guān)推薦:
全國MBA院校招生信息、學(xué)費(fèi)查詢?nèi)肟?/span>
全國MBA院校學(xué)費(fèi)匯總對(duì)比表(2017-2018年)
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。
評(píng)論0
“無需登錄,可直接評(píng)論...”