(A)120 種
�。�"/>
1、有5名同學(xué)爭(zhēng)奪3項(xiàng)比賽的冠軍,若每項(xiàng)只設(shè)1名冠軍,則獲得冠軍的可能情況的種數(shù)是( )
(A)120 種
�。˙)125 種
�。–)124種
(D)130種
�。‥)以上結(jié)論均不正確
【解題思路】這是一個(gè)允許有重復(fù)元素的排列問題,分三步完成:
第一步,獲得第1項(xiàng)冠軍,有5種可能情況;
第二步,獲得第2項(xiàng)冠軍,有5種可能情況;
第三步,獲得第3項(xiàng)冠軍,有5種可能情況;
由乘法原理,獲得冠軍的可能情況的種數(shù)是:5*5*5=125
【參考答案】(B)
2、從 這20個(gè)自然數(shù)中任取3個(gè)不同的數(shù),使它們成等差數(shù)列,這樣的等差數(shù)列共有( )
�。ˋ)90個(gè)
�。˙)120個(gè)
�。–)200個(gè)
�。―)180個(gè)
(E)190個(gè)
【解題思路】分類完成
以1為公差的由小到大排列的等差數(shù)列有18個(gè);以2為公差的由小到大的等差數(shù)列有16個(gè);以3為公差的由小到大的等差數(shù)列有14個(gè);…;以9為公差的由小到大的等差數(shù)列有2個(gè)。 組成的等差數(shù)列總數(shù)為 180(個(gè))
【參考答案】(D)
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。
評(píng)論0
“無需登錄,可直接評(píng)論...”