1、 某中學(xué)從高中7個班中選出12名學(xué)生組成校代表隊,參加市中學(xué)數(shù)學(xué)應(yīng)用題競賽活動,使代表中每班至少有1人參加的選法共有多少種?(462)
「思路1」剩下的5個分配到5個班級。c(5,7)
剩下的5個分配到4個班級。c(1,7)*c(3,6)
剩下的5個分配到3個班級。c(1,7)*c(2,6) c(2,7)*c(1,5)
剩下的5個分配到2個班級。c(1,7)*c(1,6) c(1,7)*c(1,6)
剩下的5個分配到1個班級。c(1,7)
所以c(5,7) c(1,7)*c(3,6) c(1,7)*c(2,6) c(2,7)*c(1,5) c(1,7)*c(1,6) c(1,7)*c(1,6) c(1,7)=462
「思路2」C(6,11)=462
2、 在10個信箱中已有5個有信,甲、乙、丙三人各拿一封信,依次隨便投入一信箱。求:
(1)甲、乙兩人都投入空信箱的概率。
(2)丙投入空信箱的概率。
「思路」(1)A=甲投入空信箱,B=乙投入空信箱,
P(AB)=C(1,5)*C(1,4)/(10*10)=1/5
(2)C=丙投入空信箱,
P(C)=P(C*AB) P(C* B) P(C*A ) P(C* )
=(5*4*3 5*5*4 5*6*4 5*5*5)/1000=0.385
3、 設(shè)A是3階矩陣,b1=(1,2,2)的轉(zhuǎn)置陣,b2=(2,-2,1)的轉(zhuǎn)置陣,b3=(-2,-1,2)的轉(zhuǎn)置陣,滿足Ab1=b1,Ab2=2b2,Ab3=3b3,求A.
「思路」可化簡為A(b1,b2,b3)= (b1,b2,b3)
求得A=
4、 已知P(A)=X,P(B)=2X,P(C)=3X且P(AB)=P(BC),求X的最大值。
「思路」P(BC)=P(AB)=P(A)=X
P(BC)=P(AB)小于等于P(A)=X
P(B C)=P(B) P(C)-P(BC)大于等于4X
又因為P(B C)小于等于1
4X小于等于1 ,X小于等于1/4
所以X最大為1/4
5、 在1至2000中隨機(jī)取一個整數(shù),求
(1)取到的整數(shù)不能被6和8整除的概率
(2)取到的整數(shù)不能被6或8整除的概率
「思路」設(shè)A=被6整除,B=被8整除;
P(B)=[2000/8]/2000=1/8=0.125;
P(A)=[2000/6]/2000=333/2000=0.1665;[2000/x]代表2000/x的整數(shù)部分;
(1)求1-P(AB);AB為A 、B的最小公倍數(shù);
P(AB)=[2000/24]/2000=83/2000=0.0415;答案為1-0.0415=0.9585
(2)求1-P(A B);P(A B)=P(A) P(B)-P(AB)=0.25;答案為1-0.25=0.75.
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系我們溝通解決。
評論0
“無需登錄,可直接評論...”