奶昔直播官方版-奶昔直播直播视频在线观看免费版下载-奶昔直播安卓版本免费安装

育路教育網(wǎng),權(quán)威招生服務(wù)平臺
新東方在線

考研數(shù)學(xué)中哪些知識點(diǎn)最容易出證明題

來源:網(wǎng)絡(luò) 時(shí)間:2017-04-08 11:10:45

  考研數(shù)學(xué)必考證明題,證明題怎么證?都會出什么題?下面就綜合來看看考研數(shù)學(xué)證明題類別及證法。

  題目篇

  考試難題一般出現(xiàn)在高等數(shù)學(xué),對高等數(shù)學(xué)一定要抓住重難點(diǎn)進(jìn)行復(fù)習(xí)。高等數(shù)學(xué)題目中比較困難的是證明題,在整個(gè)高等數(shù)學(xué),容易出證明題的地方如下:

  數(shù)列極限的證明

  數(shù)列極限的證明是數(shù)一、二的重點(diǎn),特別是數(shù)二比較近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

  微分中值定理的相關(guān)證明

  微分中值定理的證明題歷來是考研的重難點(diǎn),其考試特點(diǎn)是綜合性強(qiáng),涉及到知識面廣,涉及到中值的等式主要是三類定理:

  1.零點(diǎn)定理和介質(zhì)定理;

  2.微分中值定理;

  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個(gè)定理為主。

  3.微分中值定理

  積分中值定理的作用是為了去掉積分符號。

  在考查的時(shí)候,一般會把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

  方程根的問題

  包括方程根唯一和方程根的個(gè)數(shù)的討論。

  不等式的證明

  定積分等式和不等式的證明

  主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

  積分與路徑無關(guān)的五個(gè)等價(jià)條件

  這一部分是數(shù)一的考試重點(diǎn),比較近幾年沒設(shè)計(jì)到,所以要重點(diǎn)關(guān)注。

  方法篇

  以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時(shí)候重點(diǎn)歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?

  結(jié)合幾何意義記住基本原理

  重要的定理主要包括零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

  知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。

  因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  借助幾何意義尋求證明思路

  一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然比較為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取比較大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得比較大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。

  再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。

  逆推法

  從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。

  在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

  對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

考研數(shù)學(xué)中哪些知識點(diǎn)比較容易出證明題

結(jié)束

特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;

②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系我們溝通解決。

有用

25人覺得有用

閱讀全文

2019考研VIP資料免費(fèi)領(lǐng)取

【隱私保障】

育路為您提供專業(yè)解答

相關(guān)文章推薦

08

2017.04

考研數(shù)學(xué)中有哪些必考的簡單題型

考研數(shù)學(xué)復(fù)習(xí)一直以來是大部分考生的命門,從敬而遠(yuǎn)之到逃之夭夭。究竟該如何復(fù)習(xí)考研數(shù)學(xué),選擇什么樣......

08

2017.04

考研數(shù)學(xué)備考過程中 你遇到了哪些蒙圈問題?

在考研數(shù)學(xué)復(fù)習(xí)過程中,很多同學(xué)會遇到這樣或者那樣的問題,比如狀態(tài)不好如何破,碰到難題一時(shí)做不出來......

07

2017.04

2018考研數(shù)學(xué):備考中存在哪些誤區(qū)?

古語有云:“凡事預(yù)則立,不預(yù)則廢”,考研數(shù)學(xué)也是如此,要想取得好成績,一定要提前做好規(guī)劃。......

04

2017.04

歷年考研數(shù)學(xué)必考的十種題型

現(xiàn)下,小編為考生們梳理了在歷年考研數(shù)學(xué)中必考的幾類簡單題型,希望能幫助到在準(zhǔn)備2018考研的你。......

03

2017.04

2018考研數(shù)學(xué)備考規(guī)劃

有些考研專業(yè)需要考數(shù)學(xué),現(xiàn)階段很多考生不知道如何安排自己的考研數(shù)學(xué)復(fù)習(xí)計(jì)劃,下面是關(guān)于考研數(shù)學(xué)復(fù)......

30

2017.03

2018新東方考研數(shù)學(xué)零基礎(chǔ)全程班

零基礎(chǔ)起步,名師精講,24小時(shí)答疑......

您可能感興趣
為什么要報(bào)考研輔導(dǎo)班? 如何選擇考研輔導(dǎo)班? 考研輔導(dǎo)班哪個(gè)好? 哪些北京考研輔導(dǎo)班靠譜? 2019考研輔導(dǎo)班大全