向量與線性方程組是整個(gè)線性代數(shù)部分的核心內(nèi)容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問(wèn)題而做鋪墊的基礎(chǔ)性章節(jié),而其后兩章特征值和特征向量、二次型的內(nèi)容則相對(duì)獨(dú)立,可以看作是對(duì)核心內(nèi)容的擴(kuò)展。復(fù)習(xí)這兩部分內(nèi)容比較有效的方法就是徹底理順諸多知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,因?yàn)檫@樣做首先能夠保證做到真正意義上的理解,同時(shí)也是熟練掌握和靈活運(yùn)用的前提。
這部分的重要考點(diǎn)一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節(jié)的各種內(nèi)在聯(lián)系。
(1)齊次線性方程組與向量線性相關(guān)、無(wú)關(guān)的聯(lián)系 齊次線性方程組可以直接看出一定有解,因?yàn)楫?dāng)變量都為零時(shí)等式一定成立——印證了向量部分的一條性質(zhì)“零向量可由任何向量線性表示”。
齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當(dāng)齊次線性方程組有唯一零解時(shí),是指等式中的變量只能全為零才能使等式成立,而當(dāng)齊次線性方程組有非零解時(shí),存在不全為零的變量使上式成立;但向量部分中判斷向量組是否線性相關(guān)、無(wú)關(guān)的定義也正是由這個(gè)等式出發(fā)的。故向量與線性方程組在此又產(chǎn)生了聯(lián)系——齊次線性方程組是否有非零解對(duì)應(yīng)于系數(shù)矩陣的列向量組是否線性相關(guān)。可以設(shè)想線性相關(guān)、無(wú)關(guān)的概念就是為了更好地討論線性方程組問(wèn)題而提出的。
(2)齊次線性方程組的解與秩和極大無(wú)關(guān)組的聯(lián)系同樣可以認(rèn)為秩是為了更好地討論線性相關(guān)和線性無(wú)關(guān)而引入的。秩的定義是“極大線性無(wú)關(guān)組中的向量個(gè)數(shù)”。經(jīng)過(guò) “秩→線性相關(guān)、無(wú)關(guān)→線性方程組解的判定”的邏輯鏈條,就可以判定列向量組線性相關(guān)時(shí),齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過(guò)r個(gè)線性無(wú)關(guān)的解向量(基礎(chǔ)解系)線性表示。
(3)非齊次線性方程組與線性表出的聯(lián)系 非齊次線性方程組是否有解對(duì)應(yīng)于向量是否可由列向量組線性表示,使等式成立的一組數(shù)就是非齊次線性方程組的解。
溫馨提示:歡迎加入2017年研究生考試QQ交流群:371909432;2018年考研QQ交流群:415272847
歡迎關(guān)注研究生微信公眾號(hào)
特別聲明:①凡本網(wǎng)注明稿件來(lái)源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來(lái)源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來(lái)源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。
25人覺(jué)得有用
17
2017.02
下面我們整體來(lái)分析一下今年考研數(shù)學(xué)的考試情況,并對(duì)2017年的數(shù)學(xué)考研分?jǐn)?shù)線做一個(gè)簡(jiǎn)單的預(yù)測(cè)。......
17
2017.02
下面小編就今年的數(shù)學(xué)試卷作如下分析,預(yù)測(cè)國(guó)家線,并給需要復(fù)試的同學(xué)一些意見(jiàn)。......
16
2017.02
考研數(shù)學(xué)復(fù)習(xí)計(jì)劃安排基礎(chǔ)階段,系統(tǒng)階段,沖刺階段
......
16
2017.02
考研數(shù)學(xué)概率復(fù)習(xí)中需掌握30個(gè)知識(shí)點(diǎn)......
16
2017.02
2018考研數(shù)學(xué)復(fù)習(xí):整理錯(cuò)題的重要性:一、錯(cuò)題檔案助你“推陳出新”二、不能自認(rèn)“倒霉......
16
2017.02
兩個(gè)口訣輕松掌握概率統(tǒng)計(jì)......