針對在歷屆考生答卷中存在的問題,應屆考生必須早些開始復習,要按照考試大綱規(guī)定的考試內容和考試要求全面系統(tǒng)的復習,掌握核心內容,掌握解題的方法和技巧,把本門課程復習好。前三個問題,一般是考研復習的前兩個階段疏忽所致,后兩個問題,重點是沖刺階段對考研數(shù)學出題思路理解不夠。
考研高數(shù)考試的重難點分析
考研數(shù)學復習,必須按照《數(shù)學考試大綱》基本要求去做,考試大綱要求考生比較系統(tǒng)的理解數(shù)學的基本概念和基本理論,掌握數(shù)學基本方法,要求考生具有抽象思維能力、邏輯推理能力、空間想象能力、運算能力和綜合運用所學的知識分析和解決問題的能力�?缈伎佳休o導專家將結合2013《數(shù)學考試大綱》規(guī)定的考試內容和考試要求,粗略地剖析以下本門課程的重點和難點。
1、函數(shù) 極限 連續(xù)
�、僬_理解函數(shù)的概念,了解函數(shù)的奇偶性、單調性、周期性和有界性,理解復合函數(shù)、反函數(shù)及隱函數(shù)的概念。②理解極限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關系。掌握利用兩個重要極限求極 限的方法。理解無窮小、無窮大以及無窮小階的概念,會用等價無窮小求極限。③理解函數(shù)連續(xù)性的概念,會判別函數(shù)間斷點的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(比較大值、比較小值定理和介值定理),并會應用這些性質。重點是數(shù)列極限與函數(shù)極限的概念,兩個重要的極限:lim sinx/x =1, lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質。難點是分段函,復合函數(shù),極限的概念及用定義證明極限的等式。
2、一元函數(shù)微分學
�、倮斫鈱�(shù)和微分的概念,導數(shù)的幾何意義,會求平面曲線的切線方程,理解函數(shù)可導性與連續(xù)性之間的關系。②掌握導數(shù)的四則運算法則和一階微分的形式不變性。了解高階導數(shù)的概念,會求簡單函數(shù)的n階導數(shù),分段函數(shù)的一階、二階導數(shù)。會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導數(shù)及反函數(shù)的導數(shù)。③理解并會用羅爾中值定理,拉格朗日中值定理,了解并會用柯西中值定理。④理解函數(shù)極值的概念,掌握函數(shù)比較大值和比較小值的求法及簡單應用,會用導數(shù)判斷函數(shù)的凹凸性和拐點,會求函數(shù)圖形水平鉛直和斜漸近線。⑤了解曲率和曲率半徑的概念,會計算曲率和曲率半徑及兩曲線的交角。⑥掌握用羅必塔法則求未定式極限的方法,重點是導數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導性與連續(xù)性之間的關系,一階微分形式的不變性,分段函數(shù)的導數(shù)。羅必塔法則函數(shù)的極值和比較大值、比較小值的概念及其求法,函數(shù)的凹凸性判別和拐點的求法。難點是復合函數(shù)的求導法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導數(shù)的計算。
3、一元函數(shù)積分學
�、倮斫庠瘮�(shù)和不定積分和定積分的概念。②掌握不定積分的基本公式,不定積分和定積分的性質及定積分中值定理,掌握換元積分法和分部積分法。③會求有理函數(shù)、三角函數(shù)和簡單無理函數(shù)的積分 ④理解變上限積分定義的函數(shù),會求它的導數(shù),掌握牛頓萊布尼茲公式。⑤了解廣義積分的概念并會計算廣義積分。⑥掌握用定積分計算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點是原函數(shù)與不定積分的概念及性質,基本積分公式及積分 的換元法和分部積分法,定積分的性質、計算及應用。難點是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導數(shù),定積分元素法及定積分的應用。
4、向量代數(shù)與空間解析幾何
①理解向量的概念及其表示。②掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個 向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標表達式以及用坐標表達式進行向量運算的方法。③掌握平面方程和直線方程及其求法,會利用平面直線的相互關系解決有關問題。④理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉軸的旋轉曲面及母線平行于坐標軸的柱面方程。⑤了解空間曲線的參數(shù)方程和一般方程;了解空間曲線在坐標平面上的投影,并會求其方程。
5、多元函數(shù)微分學
①了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質②理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分。③理解方向導數(shù)與梯度的概念并掌握其計算方法。④掌握多元復合函數(shù)偏導數(shù)的求法,會求隱函數(shù)的偏導數(shù)。⑤了解曲線的切線和法平面及曲面的切平面和法線的概念,掌握二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求多元函數(shù)的比較大值和比較小值及一些簡單的應用問題。重點是二元函數(shù)的極限和連續(xù)的概念,偏導數(shù)與全重點是二元函數(shù)的極限和連續(xù)的概念,偏導數(shù)與全微分的概念及計算復合函數(shù)、隱函數(shù)的求導法,二階偏導數(shù),方向導數(shù)和梯度的概念及其計算�?臻g曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)極值。難點是多元復合函數(shù)的求導法,二函數(shù)的泰勒公式。
6、多元函數(shù)積分學
�、倮斫舛胤e分與三重積分的概念,了解重積分的性質。②掌握二重積分(直角坐標、極坐標)的計算方法,會計算三重積分(直角坐標、柱面坐標、球面坐標)。③理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系;掌握計算兩類曲線積分的方法;掌握格林公式并會運用平面曲線積分與路徑無關的條件。④了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的方法。⑤會用重積分、曲線積分和曲面積分求一些幾何量和物理量。重點是利用直角坐標、極坐標計算二重積分。利用直角坐標、柱面坐標、球面坐標計算三重積分。兩類曲線積分的概念、性質及計算,格林公式。兩類曲面積分的概念、性質及計算,高斯公式。難點是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計算。第二類曲面積分與斯托克斯公式。
7、無窮級數(shù)
①掌握級數(shù)的基本性質及其級數(shù)收斂的必要條件,掌握幾何級數(shù)與p級數(shù)的收斂性;掌握比值審斂法,會用正項級數(shù)的比較與根值審斂法。②會用交錯級數(shù)的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關系。③會求冪級數(shù)的和函數(shù)以及數(shù)項級數(shù)的和,掌握冪級數(shù)收斂域的求法④掌握ex 、sinx、cosx、ln( 1 + x),(1 + x)α的馬克勞林展開式,會用它們將簡單函數(shù)作間接展開;會將定義在 [-L,L]上的函數(shù)展開為傅立葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)和余弦函數(shù)。重點是數(shù)項級數(shù)的概念與性質,正項級數(shù)的審斂法,交錯級數(shù)及其審斂法,絕對收斂與條件收斂的概念。冪級數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級數(shù)。難點是求冪級數(shù)的和函數(shù),將函數(shù)展成冪級數(shù)、傅立葉級數(shù)。
8 常微分方程
① 了解微分方程及其解、階、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。②會用降階法解y ( n) =f ( x) ,y″=f ( x ,y) ,y″=f ( y ,y’)類的方程;理解線性微分方程解的性質和解的結構。③掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。④會解包含兩個未知函數(shù)的一階常系數(shù)線性微分方程組。重點是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點是由實際問題建立微分方程及確定定解條件。
以上八點幾乎涵蓋了考研數(shù)學所有重點知識,考生如能掌握以上知識,并能融會貫通,那五個考生易出現(xiàn)的錯誤基本可以得到很好解決。
特別聲明:①凡本網注明稿件來源為"原創(chuàng)"的,轉載必須注明"稿件來源:育路網",違者將依法追究責任;
②部分稿件來源于網絡,如有侵權,請聯(lián)系我們溝通解決。
25人覺得有用
13
2013.08
在考研復習的過程中除了把握住大綱上的重難點之外更最重要的是在做題中訓練自己靈活解題的能力!依......
13
2013.08
考研數(shù)學是研究生入學考試的一門重要課程,也是最易拉分的門科。在以往的考研數(shù)學中,有許多同學反......
13
2013.08
對于考研數(shù)學線性代數(shù)的復習,一定要緊抓基本知識點,只有把知識點掌握好,才能夠將考研數(shù)學中的線......
13
2013.08
扎實的基礎知識復習,合理的自我規(guī)劃和練習,逐步解決考研數(shù)學的重難知識點,同時也對出題者命題......
11
2013.08
考研任何一個學科都來不得半點投機取巧,考前突、臨時抱佛腳的做法不足取,考研數(shù)學更是如此,只......
09
2013.08
考研數(shù)學需要做題,需要通過做題來鞏固掌握,但很多同學卻陷入了題海戰(zhàn)術,把所有的精力都放在數(shù)......