微
積
分
|
2013年與2012年考研數(shù)學(xué)三大綱變化對比
|
|||
來源:文都教育
|
||||
章節(jié)
|
2013年大綱
|
2012年大綱
|
變化情況對比
|
|
函數(shù)、極限、連續(xù)
|
考試內(nèi)容
函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立
數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關(guān)系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:
函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
考試要求
1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。
5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。
6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法。
7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其無窮小量的關(guān)系。
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判斷函數(shù)間斷點(diǎn)的類型。
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、比較大值和比較小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。
|
考試內(nèi)容
函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立
數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關(guān)系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:
函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
考試要求
1 .理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。
5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。
6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法。
7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其無窮小量的關(guān)系。
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判斷函數(shù)間斷點(diǎn)的類型。
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、比較大值和比較小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。
|
對比無變化,按原計(jì)劃復(fù)習(xí)
|
|
一元函數(shù)微分學(xué)
|
考試內(nèi)容
導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線與法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)(L’Hospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的比較大值與比較小值
考試要求
1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程。
2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的高階導(dǎo)數(shù)。
4.了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分。
5.理解羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個(gè)定理的簡單應(yīng)用。
6.會(huì)用洛必達(dá)法則求極限。
7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、比較大值和比較小值的求法及其應(yīng)用。
8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù),當(dāng)時(shí),f(x)的圖形是凹的;當(dāng)時(shí),f(x)的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線。
|
考試內(nèi)容
導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線與法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)(L’Hospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的比較大值與比較小值
考試要求
1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程。
2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的高階導(dǎo)數(shù)。
4.了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分。
5.理解羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個(gè)定理的簡單應(yīng)用。
6.會(huì)用洛必達(dá)法則求極限。
7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、比較大值和比較小值的求法及其應(yīng)用。
8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù),當(dāng)時(shí),f(x)的圖形是凹的;當(dāng)時(shí),f(x)的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線。
|
對比無變化,按原計(jì)劃復(fù)習(xí)
|
|
一元函數(shù)積分學(xué)
|
考試內(nèi)容
原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓—萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,反常(廣義)積分,定積分的應(yīng)用
考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法。
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓—萊布尼茨公式以及定積分的換元積分法和分部積分法。
3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題。
4.了解反常積分的概念,會(huì)計(jì)算反常積分。
|
考試內(nèi)容
原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓—萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,反常(廣義)積分,定積分的應(yīng)用
考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法。
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓—萊布尼茨公式以及定積分的換元積分法和分部積分法。
3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題。
4.了解反常積分的概念,會(huì)計(jì)算反常積分。
|
對比無變化,按原計(jì)劃復(fù)習(xí)
|
|
多元函數(shù)微積分學(xué)
|
考試內(nèi)容
多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算,多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法,二階偏導(dǎo)數(shù),全微分,多元函數(shù)的極值和條件極值、比較大值和比較小值,二重積分的概念、基本性質(zhì)和計(jì)算,無界區(qū)域上簡單的反常二重積分
考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡單多元函數(shù)的比較大值和比較小值,并會(huì)解決簡單的應(yīng)用問題。
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無界區(qū)域上較簡單的反常二重積分并會(huì)計(jì)算。
|
考試內(nèi)容
多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算,多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法,二階偏導(dǎo)數(shù),全微分,多元函數(shù)的極值和條件極值、比較大值和比較小值,二重積分的概念、基本性質(zhì)和計(jì)算,無界區(qū)域上簡單的反常二重積分
考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡單多元函數(shù)的比較大值和比較小值,并會(huì)解決簡單的應(yīng)用問題。
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無界區(qū)域上較簡單的反常二重積分并會(huì)計(jì)算。
|
對比無變化,按原計(jì)劃復(fù)習(xí)
|
|
無窮
級數(shù)
|
考試內(nèi)容
常數(shù)項(xiàng)級數(shù)的收斂與發(fā)散的概念,收斂級數(shù)的和的概念,級數(shù)的基本性質(zhì)與收斂的必要條件,幾何級數(shù)與P級數(shù)及其收斂性,正項(xiàng)級數(shù)收斂性的判別法,任意項(xiàng)級數(shù)的絕對收斂與條件收斂,交錯(cuò)級數(shù)與萊布尼茨定理,冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域,冪級數(shù)的和函數(shù),冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡單冪級數(shù)和函數(shù)的求法,初等函數(shù)的冪級數(shù)展開式
考試要求
1.了解級數(shù)的收斂與發(fā)散、收斂級數(shù)的和的概念。
2.了解級數(shù)的基本性質(zhì)及級數(shù)收斂的必要條件,掌握幾何級數(shù)及P級數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法。
3.了解任意項(xiàng)級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,了解交錯(cuò)級數(shù)的萊布尼茨判別法。
4.會(huì)求冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域。
5.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡單冪級數(shù)在其收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級數(shù)的和。
6.了解,,,與的麥克勞林(Maclaurin)展開式。
|
考試內(nèi)容
常數(shù)項(xiàng)級數(shù)的收斂與發(fā)散的概念,收斂級數(shù)的和的概念,級數(shù)的基本性質(zhì)與收斂的必要條件,幾何級數(shù)與P級數(shù)及其收斂性,正項(xiàng)級數(shù)收斂性的判別法,任意項(xiàng)級數(shù)的絕對收斂與條件收斂,交錯(cuò)級數(shù)與萊布尼茨定理,冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域,冪級數(shù)的和函數(shù),冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡單冪級數(shù)和函數(shù)的求法,初等函數(shù)的冪級數(shù)展開式
考試要求
1.了解級數(shù)的收斂與發(fā)散、收斂級數(shù)的和的概念。
2.了解級數(shù)的基本性質(zhì)及級數(shù)收斂的必要條件,掌握幾何級數(shù)及P級數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法。
3.了解任意項(xiàng)級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,了解交錯(cuò)級數(shù)的萊布尼茨判別法。
4.會(huì)求冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域。
5.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡單冪級數(shù)在其收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級數(shù)的和。
6.了解,,,與的麥克勞林(Maclaurin)展開式。
|
對比無變化,按原計(jì)劃復(fù)習(xí)
|
|
|
常微分方程與差分方程
|
考試內(nèi)容
常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程,差分與差分方程的概念,差分方程的通解與特解,一階常系數(shù)線性差分方程,微分方程的簡單應(yīng)用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念。
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
3.會(huì)解二階常系數(shù)齊次線性微分方程。
4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程。
5.了解差分與差分方程及其通解與特解等概念。
6.了解一階常系數(shù)線性差分方程的求解方法。
7.會(huì)用微分方程求解簡單的經(jīng)濟(jì)應(yīng)用問題。
|
考試內(nèi)容
常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程,差分與差分方程的概念,差分方程的通解與特解,一階常系數(shù)線性差分方程,微分方程的簡單應(yīng)用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念。
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
3.會(huì)解二階常系數(shù)齊次線性微分方程。
4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程。
5.了解差分與差分方程及其通解與特解等概念。
6.了解一階常系數(shù)線性差分方程的求解方法。
7.會(huì)用微分方程求解簡單的經(jīng)濟(jì)應(yīng)用問題。
|
對比無變化,按原計(jì)劃復(fù)習(xí)
|
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系我們溝通解決。
25人覺得有用