SAMPLE 17
[物理學(xué)]
題目序號(hào)題型歸類
第1題中心主旨題型
第2題審題定位題型
第3題細(xì)節(jié)推導(dǎo)題型
第4題細(xì)節(jié)推導(dǎo)題型
第5題引申推導(dǎo)題型
The intensive work of materials scientists and solid-state physicists has given rise to a class of solids known as amorphous metallic alloys or glassy metals. There is a growing interest among theoretical and applied researchers alike in the structural properties of these materials.
When a molten metal or metallic alloy is cooled to a solid, a crystalline structure is formed that depends on the particular alloy composition. In contrast, molten nonmetallic glass-forming materials when cooled do not assume a crystalline structure, but instead retain a structure somewhat like that of the liquid — an amorphous structure. At room temperature the natural long-term tendency for both types of materials is to assume the crystalline structure. The difference between the two is in the kinetics or rate of formation of the crystalline structure which is controlled by factors such as the nature of the chemical bonding and the ease with which atoms move relative to each other. Thus, in metals, the kinetics favors rapid formation of a crystallines structure whereas in nonmetallic glasses the rate of formation is so slow that almost any cooling rate is sufficient to result in an amorphous structure. For glassy metals to be formed, the molten metal must be cooled extremely rapidly so that crystallization is suppressed.
The structure of glassy metals is thought to be similar to that of liquid metals. One of the first attempts to model the structure of a liquid was that by the late J. D. Bernal of the University of London, who packed hard spheres into a rubber vessel in such a way as to obtain the maximum possible density. The resulting dense, random-packed structure was the basis for many attempts to model the structure of glassy metals.
Calculations of the density of alloys based on Bernal-type models of the alloys metal component agree fairly well with the experimentally determined values from measurements on alloys consisting of a noble metal together with a metalloid such as alloys of palladium and silicon or alloys consisting of iron phosphors, and carbon, although small discrepancies remained. One difference between real alloys and the hard spheres area in Bernal models is that the components of an alloy have different size, so that models based on two sizes of spheres are more appropriate for a binary alloy for example. The smaller metalloid atoms of the alloys might fit into holes in the dense random-packed structure of the larger metal atoms.
One of the most promising properties of glassy metals is their high strength combined with high malleability. In usual materials, one finds an inverse relation between the two properties, whereas for many practical applications simultaneous presence of both properties is desirable. One residual obstacle to practical applications that is likely to be overcome is the fact that glassy metals will crystallize at relatively low temperatures when heated slightly.
1. The author is primarily concerned with discussing
[A] crystalline solids and their behavior at different temperatures.
[B] molten materials and the kinetics of the formation of their crystalline structure.
[C] glassy metals and their structural characteristics.
[D] metallic alloys and problems in determining their density.
2. The author’s attitude toward the prospects for the economic utilization of glassy metals is one of
[A] disinterest.
[B] impatience.
[C] optimism.
[D] apprehension.
3. According to the text, which of the following determines the crystalline structure of a metallic alloy?
[A] At what rate the molten alloy is cooled.
[B] How rapid the rate of formation of the crystalline phase is.
[C] How the different-sized atoms fit into a dense random-packed structure.
[D] What the alloy consists of and in what ratios.
4. Which of the following best describes the relationship between the structure of liquid metals and the structure of glassy metals, as it is presented in the text?
[A] The latter is an illustrative example of the former.
[B] The latter is a large-scale version of the former.
[C] The former is a structural elaboration of the latter.
[D] The former is a fair approximation of the latter.
5. It can be inferred from the text that, theoretically, molten nonmetallic glasses assume a crystalline structure rather than an amorphous structure only if they are cooled
[A] very evenly, regardless of the rate.
[B] rapidly, followed by gentle heating.
[C] very slowly.
[D] to room temperature.
[答案與考點(diǎn)解析]
1. 【答案】C
【考點(diǎn)解析】本題是一道中心主旨題。本文的中心主旨句是首段的第二句,該句中的“these materials”指的就是首段第一句中的“amorphous metallic alloys or glassy metals”�?梢姳绢}的正確答案應(yīng)該是C�?忌欢ㄒ溃浩平庵行闹髦碱}的關(guān)鍵在于抓住全文的中心主旨句。
2. 【答案】C
【考點(diǎn)解析】本題是一道審題定位題。根據(jù)題干中的“prospects”(前景)可將本題的答案信息迅速確定在尾段,因?yàn)槲捕问拙渲械?ldquo;promising”(有前途的)暗示本段講某種事物的前景或未來。本題的確切答案信息來源在尾段的比較后一句,該句中的“that is likely to be overcome”暗示本題的正確答案是C。考生在解題時(shí)一定要具備迅速地審題定位能力,還要具備理解原文深層含義的能力。
3. 【答案】D
【考點(diǎn)解析】這是一道細(xì)節(jié)推導(dǎo)題。根據(jù)題干中的“crystalline structure”可將本題的答案迅速確定在第二段的首句,該句中的“depends on”和題干中的“determines”相互呼應(yīng)。通過仔細(xì)理解第二段的首句可推導(dǎo)出本題的正確選項(xiàng)是D。請(qǐng)考生注意原文中“composition”和選項(xiàng)中“consists of”的轉(zhuǎn)換�?忌诮忸}時(shí)一定要具備細(xì)節(jié)推導(dǎo)能力,不能只停留于文字的表面含義。
4. 【答案】D
【考點(diǎn)解析】這是一道細(xì)節(jié)推導(dǎo)題。根據(jù)題干中的“the structure of liquid metals and the structure of glassy metals”可將本題的答案信息來源迅速確定在第三段的首句。該句中的“similar”一詞暗示選項(xiàng)D是正確答案。考生在解題時(shí)應(yīng)重視對(duì)立對(duì)比關(guān)系。
5. 【答案】C
【考點(diǎn)解析】本題是一道總結(jié)歸納信息并進(jìn)行引申推導(dǎo)題型。從本題題干中的“molten nonmetallic glasses”可斷定本題的答案信息在本文第二段,因?yàn)樵摼渲邪蓄}干中的核心詞語“molten nonmetallic glasses”。我們需要?dú)w納和總結(jié)本段的每一句話,尤其是第三、四句的內(nèi)容,另外本段尾句的含義為推導(dǎo)(infer)出本題的正確選項(xiàng)C起到至關(guān)重要的作用�?忌谄平獯祟愵}型時(shí)一定要注意首先歸納和總結(jié)原文中相應(yīng)出題點(diǎn)的全面信息,更要注意邏輯推導(dǎo)的能力。
[參考譯文]
材料科學(xué)家和固體物理學(xué)家的深入研究已促進(jìn)了一種固體物質(zhì)的出現(xiàn),這類固體被稱為非晶體金屬合金,也就是玻璃金屬。理論和應(yīng)用研究者對(duì)這些材料的結(jié)構(gòu)特性的興趣正與日俱增。
當(dāng)一種熔化的金屬和金屬合金冷卻成固體時(shí),依賴于特定的合金成份將形成各種晶體結(jié)構(gòu)。相比之下,熔化的非金屬、玻璃類材料在冷卻后將不會(huì)形成晶體結(jié)構(gòu),而是保留一點(diǎn)類似于液體的非晶體結(jié)構(gòu),在室溫條件下,兩類材料的自然的長期傾向都形成了晶體結(jié)構(gòu)。它們之間的不同在于動(dòng)態(tài)性,即形成晶體結(jié)構(gòu)的速度。這種動(dòng)態(tài)性受下述兩種因素控制:化學(xué)結(jié)合的性質(zhì)和分子之間相互運(yùn)動(dòng)的自由程度。由此,對(duì)金屬而言,動(dòng)態(tài)歷程有利于晶體結(jié)構(gòu)的快速形成;而對(duì)非金屬來說,這種形成速度非常慢,以至于任何自然冷卻速度都足以形成一種非晶體結(jié)構(gòu)。要想形成玻璃金屬,熔化的金屬必須以極快的速度冷卻,以抑制晶體的形成。
人們認(rèn)為玻璃金屬的結(jié)構(gòu)與液態(tài)金屬的結(jié)構(gòu)類似。創(chuàng)建這種液體結(jié)構(gòu)模型的第一次嘗試是已故的倫敦大學(xué)的J. D.鮑納爾進(jìn)行的,他將堅(jiān)硬的球體盡可能多地填塞進(jìn)一個(gè)橡膠容器中,以便得到一種比較大可能的密度。這個(gè)密度結(jié)果以及隨機(jī)填塞結(jié)構(gòu)以后便成為試圖建立玻璃金屬結(jié)構(gòu)模型的基礎(chǔ)。
基于鮑納爾模型,由合成金屬的成份組成對(duì)合金密度的計(jì)算結(jié)果與實(shí)驗(yàn)測得的結(jié)果相當(dāng)?shù)匚呛希?dāng)然一些細(xì)微的差異仍然存在。實(shí)驗(yàn)結(jié)果是通過測量由一種重金屬和類金屬組成的合金得到的,如鈀和硅的合金,或鐵磷和碳組成的合金。實(shí)際的合金和鮑納爾模型所用的球體之間的差別在于合金的成份有不同的體積大小,因此,基于兩種大小的球體的模型更適合于兩類物質(zhì)的合金。合金中非金屬的小原子可能填進(jìn)由大原子隨機(jī)填塞形成的緊密結(jié)構(gòu)中。
玻璃金屬比較有前景的一個(gè)特征是高強(qiáng)度與高延伸性的結(jié)合。在常見的晶體材料中,這兩種特性一般是成反比的,但人們渴望它們同時(shí)存在。在實(shí)際用途中可能還有一個(gè)問題急待解決,即當(dāng)玻璃金屬在相對(duì)的低溫下慢慢加熱時(shí),它會(huì)逐漸變?yōu)榫w結(jié)構(gòu)。
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。
25人覺得有用
21
2011.12
SAMPLE 16[歷史學(xué)]題目序號(hào)題型歸類第1題例(舉)證題型第2題細(xì)節(jié)推導(dǎo)題型第3題細(xì)節(jié)推導(dǎo)題型第4題寫作手......
21
2011.12
SAMPLE 15[生態(tài)學(xué)]題目序號(hào)題型歸類第1題中心主旨題型第2題細(xì)節(jié)推導(dǎo)題型第3題審題定位與中心主旨題型第......
21
2011.12
SAMPLE 14[歷史學(xué)]題目序號(hào)題型歸類第1題標(biāo)點(diǎn)符號(hào)題型第2題細(xì)節(jié)推導(dǎo)題型第3題歸納推導(dǎo)題型第4題審題定......
21
2011.12
SAMPLE 13[醫(yī)學(xué)類]題目序號(hào)題型歸類第1題中心主旨題型第2題審題定位題型第3題細(xì)節(jié)推導(dǎo)題型第4題句間關(guān)......
21
2011.12
SAMPLE 12[生物學(xué)類]題目序號(hào)題型歸類第1題細(xì)節(jié)推導(dǎo)題型第2題寫作手法題型第3題審題定位與中心主旨題型......
21
2011.12
SAMPLE 11[歷史學(xué)]題目序號(hào)題型歸類第1題中心主旨題型第2題審題定位題型第3題審題定位題型第4題標(biāo)點(diǎn)符......