數(shù)學(xué)高二解題技巧:換元法講解
換元的思想和方法,在數(shù)學(xué)中有著廣泛的應(yīng)用,靈活運(yùn)用換元法解題,有助于數(shù)量關(guān)系明朗化,考試技巧,變繁為簡(jiǎn),化難為易,給出簡(jiǎn)便、巧妙的解答。
在解題過程中,把題中某一式子如f(x),作為新的變量y或者把題中某一變量如x,用新變量t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進(jìn)行變量代換,得到結(jié)構(gòu)簡(jiǎn)單便于求解的新解題方法,通常稱為換元法或變量代換法。
用換元法解題,關(guān)鍵在于根據(jù)問題的結(jié)構(gòu)特征,選擇能以簡(jiǎn)馭繁,化難為易的代換f(x)=y或x=g(t)。就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數(shù)式代換,對(duì)數(shù)式代換,三角式代換,反三角式代換,復(fù)變量代換等,宜在解題實(shí)踐中不斷總結(jié)經(jīng)驗(yàn),掌握有關(guān)的技巧。
例如,用于求解代數(shù)問題的三角代換,在具體設(shè)計(jì)時(shí),宜遵循以下原則:(1)全面考慮三角函數(shù)的定義域、值域和有關(guān)的公式、性質(zhì);(2)力求減少變量的個(gè)數(shù),使問題結(jié)構(gòu)簡(jiǎn)單化;(3)便于借助已知三角公式,建立變量間的內(nèi)在聯(lián)系。只有全面考慮以上原則,才能謀取恰當(dāng)?shù)娜谴鷵Q。
換元法是一種重要的數(shù)學(xué)方法,在多項(xiàng)式的因式分解,代數(shù)式的化簡(jiǎn)計(jì)算,恒等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數(shù)表達(dá)式、定義域、值域或最值的推求,以及解析幾何中的坐標(biāo)替換,普通方程與參數(shù)方程、極坐標(biāo)方程的互化等問題中,都有著廣泛的應(yīng)用。
(責(zé)任編輯:彭海芝)
特別說明:由于各省份高考政策等信息的不斷調(diào)整與變化,育路高考網(wǎng)所提供的所有考試信息僅供考生及家長(zhǎng)參考,敬請(qǐng)考生及家長(zhǎng)以權(quán)威部門公布的正式信息為準(zhǔn)。
分享“數(shù)學(xué)高二解題技巧:換元法講解”到:
- 高二數(shù)學(xué) 知識(shí)點(diǎn)的總結(jié)。
- 高二數(shù)學(xué)學(xué)習(xí)方法的八大法則。
- 如何學(xué)好高二的數(shù)學(xué)課門呢?
- 高二數(shù)學(xué)學(xué)習(xí)方法的匯總。
- 數(shù)學(xué)從高二墊底到高考138分,她的成績(jī)是
- 高二數(shù)學(xué) 復(fù)習(xí)的3種重要方法
- 高二數(shù)學(xué) 學(xué)習(xí)的方法以及技巧
- 高二數(shù)學(xué)學(xué)法:精選高二數(shù)學(xué)輕松高效學(xué)
- 高二數(shù)學(xué)學(xué)法:高二數(shù)學(xué)學(xué)習(xí)問題自我評(píng)
- 數(shù)學(xué)高二知識(shí)點(diǎn):簡(jiǎn)單隨機(jī)抽樣
高考最新動(dòng)態(tài)
- 2018年江西省體育單招考試文化課統(tǒng)考安
- 北京市高校招生體檢結(jié)果4月20日起可查詢
- 上海市4月高中生學(xué)業(yè)水平考試成績(jī)于4月
- 2018年青海省高校招生體育專業(yè)統(tǒng)考時(shí)間
- 2018年北京市高中學(xué)業(yè)水平考試于6月底開
- 2018年重慶市高職考試分?jǐn)?shù)線公布
- 2018年北京市高中學(xué)業(yè)水平考試時(shí)間安排
- 2018年浙江省4月學(xué)考選考首日 51.3萬考
- 廣東省自學(xué)考試商務(wù)、金融管理等專業(yè)考
- 2018年青海省將實(shí)行平行志愿投檔錄取方