高二數(shù)學不等式的解法
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≤,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
不等式的解法:
(1)一元二次不等式: 一元二次不等式二次項系數(shù)小于零的,同解變形為二次項系數(shù)大于零;注:要對 進行討論:
(2)絕對值不等式:若 ,則 ; ;
注意:
1、解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
(1)對絕對值內的部分按大于、等于、小于零進行討論去絕對值;
(2)通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(3)含有多個絕對值符號的不等式可用“按零點分區(qū)間討論”的方法來解。
(4)分式不等式的解法:通解變形為整式不等式;
(5)不等式組的解法:分別求出不等式組中,每個不等式的解集,然后求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數(shù)軸上,取它們的公共部分。
(6)解含有參數(shù)的不等式:
解含參數(shù)的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數(shù)的式子時,則需討論這個式子的正、負、零性.
�、谠谇蠼膺^程中,需要使用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性時,則需對它們的底數(shù)進行討論.
�、墼诮夂凶帜傅囊辉尾坏仁綍r,需要考慮相應的二次函數(shù)的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數(shù),要討論。
(責任編輯:彭海芝)
特別說明:由于各省份高考政策等信息的不斷調整與變化,育路高考網(wǎng)所提供的所有考試信息僅供考生及家長參考,敬請考生及家長以權威部門公布的正式信息為準。
- 1空乘專業(yè)查看招生院校
- 2高鐵乘務專業(yè)查看招生院校
- 3影視后期制作查看招生院校
- 4酒店管理專業(yè)查看招生院校
- 5護理專業(yè)查看招生院校
- 6UI設計專業(yè)查看招生院校
- 7飛機維修專業(yè)查看招生院校
- 8學前教育專業(yè)查看招生院校
- 9視覺傳達設計查看招生院校
- 10動漫動畫專業(yè)查看招生院校
高考就業(yè)率最高的十大專業(yè)排行
分享“高二數(shù)學不等式的解法”到: