奶昔直播官方版-奶昔直播直播视频在线观看免费版下载-奶昔直播安卓版本免费安装

高中數(shù)學對稱問題分類探析

2011-09-30 10:19:53 來源:中國教育在線

  對稱問題是高中數(shù)學的重要內(nèi)容之一,在高考數(shù)學試題中常出現(xiàn)一些構(gòu)思新穎解法靈活的對稱問題,為使對稱問題的知識系統(tǒng)化,本文特作以下歸納。

  一、點關(guān)于已知點或已知直線對稱點問題

  1、設(shè)點P(x,y)關(guān)于點(a,b)對稱點為P′(x′,y′),

  x′=2a-x

  由中點坐標公式可得:y′=2b-y

  2、點P(x,y)關(guān)于直線L:Ax+By+C=O的對稱點為

  x′=x-(Ax+By+C)

  P′(x′,y′)則

  y′=y-(AX+BY+C)

  事實上:∵PP′⊥L及PP′的中點在直線L上,可得:Ax′+By′=-Ax-By-2C

  解此方程組可得結(jié)論。

  (-)=-1(B≠0)

  特別地,點P(x,y)關(guān)于

  1、x軸和y軸的對稱點分別為(x,-y)和(-x,y)

  2、直線x=a和y=a的對標點分別為(2a-x,y)和(x,2a-y)

  3、直線y=x和y=-x的對稱點分別為(y,x)和(-y,-x)

  例1光線從A(3,4)發(fā)出后經(jīng)過直線x-2y=0反射,再經(jīng)過y軸反射,反射光線經(jīng)過點B(1,5),求射入y軸后的反射線所在的直線方程。

  解:如圖,由公式可求得A關(guān)于直線x-2y=0的對稱點

  A′(5,0),B關(guān)于y軸對稱點B′為(-1,5),直線A′B′的方程為5x+6y-25=0

  `C(0,)

 �。嘀本BC的方程為:5x-6y+25=0

  二、曲線關(guān)于已知點或已知直線的對稱曲線問題

  求已知曲線F(x,y)=0關(guān)于已知點或已知直線的對稱曲線方程時,只須將曲線F(x,y)=O上任意一點(x,y)關(guān)于已知點或已知直線的對稱點的坐標替換方程F(x,y)=0中相應(yīng)的作稱即得,由此我們得出以下結(jié)論。

  1、曲線F(x,y)=0關(guān)于點(a,b)的對稱曲線的方程是F(2a-x,2b-y)=0

  2、曲線F(x,y)=0關(guān)于直線Ax+By+C=0對稱的曲線方程是F(x-(Ax+By+C),y-(Ax+By+C))=0

  特別地,曲線F(x,y)=0關(guān)于

  (1)x軸和y軸對稱的曲線方程分別是F(x,-y)和F(-x,y)=0

  (2)關(guān)于直線x=a和y=a對稱的曲線方程分別是F(2a-x,y)=0和F(x,2a-y)=0

  (3)關(guān)于直線y=x和y=-x對稱的曲線方程分別是F(y,x)=0和F(-y,-x)=0

  除此以外還有以下兩個結(jié)論:對函數(shù)y=f(x)的圖象而言,去掉y軸左邊圖象,保留y軸右邊的圖象,并作關(guān)于y軸的對稱圖象得到y(tǒng)=f(|x|)的圖象;保留x軸上方圖象,將x軸下方圖象翻折上去得到y(tǒng)=|f(x)|的圖象。

  例2(全國高考試題)設(shè)曲線C的方程是y=x3-x。將C沿x軸y軸正向分別平行移動t,s單位長度后得曲線C1:

  1)寫出曲線C1的方程

  2)證明曲線C與C1關(guān)于點A(,)對稱。

  (1)解知C1的方程為y=(x-t)3-(x-t)+s

  (2)證明在曲線C上任取一點B(a,b),設(shè)B1(a1,b1)是B關(guān)于A的對稱點,由a=t-a1,b=s-b1,代入C的方程得:

  s-b1=(t-a1)3-(t-a1)

 �。郻1=(a1-t)3-(a1-t)+s

 �。郆1(a1,b1)滿足C1的方程

 �。郆1在曲線C1上,反之易證在曲線C1上的點關(guān)于點A的對稱點在曲線C上

 �。嗲C和C1關(guān)于a對稱

  我們用前面的結(jié)論來證:點P(x,y)關(guān)于A的對稱點為P1(t-x,s-y),為了求得C關(guān)于A的對稱曲線我們將其坐標代入C的方程,得:s-y=(t-x)3-(t-x)

 �。鄖=(x-t)3-(x-t)+s

  此即為C1的方程,`C關(guān)于A的對稱曲線即為C1。

  三、曲線本身的對稱問題

  曲線F(x,y)=0為(中心或軸)對稱曲線的充要條件是曲線F(x,y)=0上任意一點P(x,y)(關(guān)于對稱中心或?qū)ΨQ軸)的對稱點的坐標替換曲線方程中相應(yīng)的坐標后方程不變。

  例如拋物線y2=-8x上任一點p(x,y)與x軸即y=0的對稱點p′(x,-y),其坐標也滿足方程y2=-8x,`y2=-8x關(guān)于x軸對稱。

  例3方程xy2-x2y=2x所表示的曲線:

  A、關(guān)于y軸對稱B、關(guān)于直線x+y=0對稱

  C、關(guān)于原點對稱D、關(guān)于直線x-y=0對稱

  解:在方程中以-x換x,同時以-y換y得

  (-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不變

  `曲線關(guān)于原點對稱。

  函數(shù)圖象本身關(guān)于直線和點的對稱問題我們有如下幾個重要結(jié)論:

  1、函數(shù)f(x)定義線為R,a為常數(shù),若對任意x∈R,均有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=a對稱。

  這是因為a+x和a-x這兩點分別列于a的左右兩邊并關(guān)于a對稱,且其函數(shù)值相等,說明這兩點關(guān)于直線x=a對稱,由x的任意性可得結(jié)論。

  例如對于f(x)若t∈R均有f(2+t)=f(2-t)則f(x)圖象關(guān)于x=2對稱。若將條件改為f(1+t)=f(3-t)或f(t)=f(4-t)結(jié)論又如何呢?第一式中令t=1+m則得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同樣結(jié)論即關(guān)于x=2對稱,由此我們得出以下的更一般的結(jié)論:

  2、函數(shù)f(x)定義域為R,a、b為常數(shù),若對任意x∈R均有f(a+x)=f(b-x),則其圖象關(guān)于直線x=對稱。

  我們再來探討以下問題:若將條件改為f(2+t)=-f(2-t)結(jié)論又如何呢?試想如果2改成0的話得f(t)=-f(t)這是奇函數(shù),圖象關(guān)于(0,0)成中心對稱,現(xiàn)在是f(2+t)=-f(2-t)造成了平移,由此我們猜想,圖象關(guān)于M(2,0)成中心對稱。如圖,取點A(2+t,f(2+t))其關(guān)于M(2,0)的對稱點為A′(2-x,-f(2+x))

  ∵-f(2+X)=f(2-x)`A′的坐標為(2-x,f(2-x))顯然在圖象上

  `圖象關(guān)于M(2,0)成中心對稱。

  若將條件改為f(x)=-f(4-x)結(jié)論一樣,推廣至一般可得以下重要結(jié)論:

  3、f(X)定義域為R,a、b為常數(shù),若對任意x∈R均有f(a+x)=-f(b-x),則其圖象關(guān)于點M(,0)成中心對稱。

  作者簡介

  潭玉石:2001—2006年在湖南省一重點中學任校長,2006年至今任中山市楊仙逸中學校長。中學數(shù)學特級教師,廣東省普通中學教學水平評估專家。

  (責任編輯:韓志霞)

  特別說明:由于各省份高考政策等信息的不斷調(diào)整與變化,育路高考網(wǎng)所提供的所有考試信息僅供考生及家長參考,敬請考生及家長以權(quán)威部門公布的正式信息為準。

高考專業(yè)報名咨詢
  • 意向?qū)I(yè):
  • 學生姓名:
  • 聯(lián)系電話:
  • 出生日期:
  • 您的問題:
  • 《隱私保障》

分享“高中數(shù)學對稱問題分類探析”到:

58.4K

網(wǎng)站地圖

關(guān)注高考招生官微
獲取更多招生信息
高校招生微信